TPC electronics options

Takao Sakaguchi BNL

Possible options considered

- ALICE TPC uses SAMPA chips
 - We will hear from Ken more detail on the progress today
- STAR iTPC also uses SAMPA chips
 - They are expecting to receive proto-type of SAMPA chips this April.
 - If they figured out that they can't receive in time, they will reuse current TPC electronics (PASA+ALTRO). We need polarity-change amp. in addition.
 - They will decide in April which way to go.

DREAM option

- For test experiments, we can use a board that can handle 512 channels (they
 are willing to lend us). TS will visit Sacley and learn how to use it.
- For mass production, we have to discuss with Sacley people about the cost
- ATLAS VMM option (John pointed it to me)
 - An ASIC called VMM is developed here in BNL, and intended to be used both for negative (e.g. Micromegas) and positive signals
 - Haven't contacted to the people involved.
 - Can be operated in continuous mode at 1MHz/channel, 10bit ADC.
 - Needs engineering for peripheral circuit and board design

2/22/2016

Readout situation

- We need electronics to readout. Based on the schedule outlined below, the electronics should be ready by the end of April next year
 - Roughly, one year from now
- We may want to establish a readout scheme that is also good for the final version if possible

Itoms	2015			2016							2017													
Items	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9
Field Cage design																								
Field Cage procurement																								
Field Cage assembly																								
GEM Blob production																								
Chevron Pad ver1																								
Chevron Pad ver2																								
Chevron Pad ver3																								
FEM Development																								
Basic Performance test							1																	
Beam Test																								

FNAL Beam test

ALICE schedule from WBS last year

- The very first version of proto-type will be produced by the end of FY16
 - I thought they will produce ~10% of total. I should check
- One option is to join the test board effort?

2/22/2016

Current TPC electronics cost

Test Stand Modification	30	\$8,000.00	TPC-E-2180		
Assemble and test prototype electronics:			TPC-E-2230		
preproduction prototype	20	\$3,000.00	1 PC-E-2230		
Review and write design change specifications	25	\$43,000.00	TPC-E-2260		

1.3.4.10.1.3

BOE prepared

_	Items	Duration (d)	costs	Notes				
Final external design review		20	\$33,000.00	TPC-E-3120	<u> </u>			
Procure all components needed for TPC FEC				TPC-E-1180, labor not included				
	production	20	20 \$750,000.00 TPC-E-1180, Tabor Hot included					
purchase a power supply module		5	5 \$84,000.00 Just to order, labor not in					
Fabricate and assemble TPC FEC: production		55 \$220,000.00		TPC-E-2180				
Test and qualify TPC FEC production		55	\$40,000.00	TPC-E-1230				

Not listed in the WBS

ltems	Duration (d)	costs	Notes		
Shipping fee (to ORNL)	10	\$600.00	TPC-E-1190		
Proess University of Houston Subcontract fee	1 \$6,900.00		TPC-E-1180		
Final Vendor Evaluation and Selection	70	\$22,000.00	TPC-E-3110		
FY16, Mgmt coord, contributed LOE and Travel	270	\$49,000.00	TPC-TR-FY16		
FY17, Mgmt coord, contributed LOE and Travel	250	\$42,000.00	TPC-TR-FY17		
FY18, Mgmt coord, contributed LOE and Travel	200	\$43,000.00	TPC-TR-FY18		

Total

Total Time (days, listed in WBS)

Total Costs

Additional Costs for labor

750 \$1,869,500.00 \$561,600.00 *Not accounting for any parallel job splitting

- * used 8hrs/day, \$120/hr
- * labor days: 750 165 (parts procurement and fabrication) = 585 days
- * maybe double counting the labor cost for design/layout (correspoding to \$270,000.00)

Almost complete copy of ALICE WBS scaled by the # channels (560K -> 200K)

^{***} The number in notes are the pointer to the ALICE TPC electronics WBS

^{***} For actual material costs related to fabrication of boards, I scaled the costs by the factor of 2.5; We assume 200K channels, while ALICE TPC upgrade, it is 550K channels. 550/200=2.75, so 2.5 is a conservative estimate of the cost of fabrication

We are now for STAR iTPC electronics

- STAR is planning to double # of pads for the inner TPC (iTPC)
 - Currently 40K pads are readout. It's going to be 80K pads
 - Total pads for inner+outer will be 175K.
 - The idea is to instrument 80K channels with new electronics.
- They decided to design the new electronics with so-called SAMPA chips
 - New chips employed for ALICE TPC upgrade
 - Replacement of PASA+ALTRO chips currently used.
 - CSA + Shaper + ADC + some controlling functions
- Old 40K electronics will be available for anyone?
 - c.f., sPHENIX TPC needs 180-200K channels in the end.

5/4/2016 6

Descoping option 1

- Follow the current STAR's development plan
 - It would be ideal to fabricate all of 180K channels
 - Parts including SAMPA used for the current design may not be available later.
 - If we fabricate only X channels now, (180K-X) channels may be fabricated with a new design and thus new parts.
 - Another development effort may be needed.
- Schedule of SAMPA chips
 - The first non-packaged SAMPA chip should come out early June
 - A prototype testing board for the non-packaged chips is designed and will be manufactured by ALICE-affiliated French group by July.
 - Tonko will get one board for local STAR preliminary tests.
 - The packaged chip is expected in mid/late July at which point STAR will have their own board for further testing and other integration
- No formal design of the electronics exists at this moment
 - Cost estimate for 80K channels in the following slide.

5/4/2016

Readout scheme

5/4/2016

From Tonko's slides (80K channels)

We have to figure out the cost for labor!

Presented in Jan, 2016

Cost

	# items	# with spares	\$ per item	\$ all	With contingency (20%), overhead (56%)
SAMPA	2640	3500	\$44	\$154k	
iFEE	1320	1580	\$130 (wo SAMPA)	\$206k	
iRDO	96	116	\$1300	\$151k	
DAQ Receiver	24	26	\$3500	\$91k	
Cables, fibers, misc	-	-	-	\$50k	
Power Supplies	48	52	\$600	\$32k	
DAQ PC	24	26	\$3000	\$80k	
Totals				\$764k	\$1430k

From Tonko's slides

We could use the prototype iFEE for the current TPC development under BNL LDRD

Presented in Jan, 2016

Schedule

	2016	2017	2018 early	2018 late
padplane	prototype test produce		start sector installation	end sector installation
iFEE	evaluate SAMPA prototype with SAMPA	final version produce 1 sector's worth	produce all PCBs vet PCB purchase all components install into 1 sector & test	SAMPA arrives mount SAMPA & components Q&A install all full system test
iRDO	prototype 2	final version produce 1 sector's worth	produce & Q&A all install into 1 sector & test	install all full system test
Power Supplies Trigger Cables Fibers	evaluate	evaluate test	purchase & install all full test using 1 sector's worth	full system test
Receiver Cards	prototype test	final version	purchase & install all full test using 1 sector's worth	full system test
DAQ PCs	develop drivers	final drivers & software specification	purchase & install all full test using 1 sector's worth	full system test

Descoping option 2

- Use of old STAR iTPC electronics
 - 40K channels for free, which readouts ~1/5 of the TPC
 - One may even have to reduce the number of pads to be readout
 - Old electronics is similar to the current ALICE TPC electronics.
 - PASA+ALTRO chips. The chips are for unipolar signal (positive)
 - STAR uses MWPC for readout system. The polarity is opposite for the GEM readout (MWPC: induced charge, GEM: direct charge)
 - No more channels are available nor additionally produced.
 - No more PASA+ALTRO chips are available
 - Or, do we even ask ALICE to provide their electronics?
 - We have to develop a polarity inverting pre-amplifier
 - This is not difficult, and straightforward.
 - Since the form factor of STAR iTPC and sPHENIX TPC are different, we have to develop this kind of interface board anyway.
 - Costs for this development should be estimated.

5/4/2016 11